Caspase proteolysis of desmin produces a dominant-negative inhibitor of intermediate filaments and promotes apoptosis.
نویسندگان
چکیده
Caspase cleavage of key cytoskeletal proteins, including several intermediate filament proteins, triggers the dramatic disassembly of the cytoskeleton that characterizes apoptosis. Here we describe the muscle-specific intermediate filament protein desmin as a novel caspase substrate. Desmin is cleaved selectively at a conserved Asp residue in its L1-L2 linker domain (VEMD downward arrow M(264)) by caspase-6 in vitro and in myogenic cells undergoing apoptosis. We demonstrate that caspase cleavage of desmin at Asp(263) has important functional consequences, including the production of an amino-terminal cleavage product, N-desmin, which is unable to assemble into intermediate filaments, instead forming large intracellular aggregates. Moreover, N-desmin functions as a dominant-negative inhibitor of filament assembly, both for desmin and the structurally related intermediate filament protein vimentin. We also show that stable expression of a caspase cleavage-resistant desmin D263E mutant partially protects cells from tumor necrosis factor-alpha-induced apoptosis. Taken together, these results indicate that caspase proteolysis of desmin at Asp(263) produces a dominant-negative inhibitor of intermediate filaments and actively participates in the execution of apoptosis. In addition, these findings provide further evidence that the intermediate filament cytoskeleton has been targeted systematically for degradation during apoptosis.
منابع مشابه
Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation
IF (intermediate filament) proteins can be cleaved by caspases to generate proapoptotic fragments as shown for desmin. These fragments can also cause filament aggregation. The hypothesis is that disease-causing mutations in IF proteins and their subsequent characteristic histopathological aggregates could involve caspases. GFAP (glial fibrillary acidic protein), a closely related IF protein exp...
متن کاملA missense mutation in the desmin rod domain is associated with autosomal dominant distal myopathy, and exerts a dominant negative effect on filament formation.
In some myopathies of distal onset, the intermediate filament desmin is abnormally accumulated in skeletal and cardiac muscle. We report the first point mutation in desmin cosegregating with an autosomal dominant form of desmin-related myopathy. The L345P desmin missense mutation occurs in a large, six generation Ashkenazi Jewish family. The mutation is located in an evolutionarily highly conse...
متن کاملDesmin mediates TNF-α–induced aggregate formation and intercalated disk reorganization in heart failure
We explored the involvement of the muscle-specific intermediate filament protein desmin in the model of tumor necrosis factor alpha (TNF-alpha)-induced cardiomyopathy. We demonstrate that in mice overexpressing TNF-alpha in the heart (alpha-myosin heavy chain promoter-driven secretable TNF-alpha [MHCsTNF]), desmin is modified, loses its intercalated disk (ID) localization, and forms aggregates ...
متن کاملCaspase Cleavage of Keratin 18 and Reorganization of Intermediate Filaments during Epithelial Cell Apoptosis
Keratins 8 (K8) and 18 (K18) are major components of intermediate filaments (IFs) of simple epithelial cells and tumors derived from such cells. Structural cell changes during apoptosis are mediated by proteases of the caspase family. During apoptosis, K18 IFs reorganize into granular structures enriched for K18 phosphorylated on serine 53. K18, but not K8, generates a proteolytic fragment duri...
متن کاملOn noxious desmin: functional effects of a novel heterozygous desmin insertion mutation on the extrasarcomeric desmin cytoskeleton and mitochondria.
Recent studies in desmin (-/-) mice have shown that the targeted ablation of desmin leads to pathological changes of the extrasarcomeric intermediate filament cytoskeleton, as well as structural and functional abnormalities of mitochondria in striated muscle. Here, we report on a novel heterozygous single adenine insertion mutation (c.5141_5143insA) in a 40-year-old patient with a distal myopat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 9 شماره
صفحات -
تاریخ انتشار 2003